Finden Sie schnell wärmepumpe funktionsprinzip für Ihr Unternehmen: 145 Ergebnisse

Wärmepumpe Monoblock R290 - 6kW

Wärmepumpe Monoblock R290 - 6kW

- HIGH PERFORMANCE Vorlauftemperatur 70°C - Flüstermodus 42 dB(A) bei 2,1m - Kühlmittel R290 (Propan) - Förderfähig - Integrierte elektrische Heizung 3kW - Automatische Messung der Leistungserzeugung (C.O.P) - Touchscreen-Bedienfeld und Steuerung per App - 5 Jahre Garantie Inkl. Zubehör: - Temperaturfühler - Datenleitung zwischen Außeneinheit & Inneneinheit - Heizstab - Wlanmodul - Sicherheitsgruppe - Wandhalterung Inneneinheit
Aldea ALD-HTIPC120 R290 Kältemittel: Umweltfreundliche Kühllösung

Aldea ALD-HTIPC120 R290 Kältemittel: Umweltfreundliche Kühllösung

Bei Aldea fühlen wir uns mit R290-Gas der Umweltverantwortung verpflichtet, um den CO2-Ausstoß zu reduzieren. Unsere Bigblue-Geräte arbeiten effizient (-25 °C bis 43 °C) und sorgen für hohe Wasseraustrittstemperaturen. Durch den Einsatz überlegener Inverter-Kompressortechnologie senken sie die Stromkosten. Ausgestattet mit hochwertigen Komponenten, darunter fortschrittliche Leiterplattenkühlung und modernste Verdampfer, garantieren sie effizientes Heizen, Warmwasser und Kühlen. Unsere mit WaterMark zertifizierten zweireihigen Plattenwärmetauscher erfüllen höchste Standards. Unsere Wärmepumpen sind mit Fernüberwachungs- und Steuerungssystemen kompatibel und bieten eine einfache Verwaltung. Mit der Cloud-Technologie können Benutzer aus der Ferne auf Parameter zugreifen, ideal für Industrieanlagen oder Hotels.
Abb. 4: Schematischer Verlauf des Schichtwachstums beim Nitrieren/ Nitrocarburieren von Reineisen

Abb. 4: Schematischer Verlauf des Schichtwachstums beim Nitrieren/ Nitrocarburieren von Reineisen

Im weiteren Verlauf des Nitriervorgangs nimmt die Dicke der Nitrierschicht zu, wobei die Wachstumsgeschwindigkeit mit zunehmender Dauer durch die immer stärkere Diffusionsbehinderung sinkt [5,6,7]. Zusätzlich kann Kohlenstoff in die Verbindungsschicht eingebaut werden. Dieser wird dem Werkstoff aus dem Reaktionsmedium und dem Grundmaterial zugeführt. Man erhält Nitridschichten entsprechend dem Dreistoffsystem Fe-C-N (Abb. 5)
Der Puffercontrol ist eine Temperaturanzeige für Pufferspeicher.

Der Puffercontrol ist eine Temperaturanzeige für Pufferspeicher.

Diese wurde entwickelt, um den Besitzern aller Arten von Holzheizungen, den Komfort zu bieten, den Energieinhalt ihres Pufferspeichers vom Wohnzimmer aus abzulesen. Dabei werden mehrere Fühler am Pufferspeicher platziert und an ein Sensormodul angeschlossen. Dieses überträgt die Temperaturen durch Kabelverbindung zum Anzeigemodul. Es sind verschiedene Anzeigearten möglich. Unter anderem auch die Anzeige der Temperaturen in 2 Pufferspeicher oder der gleichzeitigen Anzeige eines Puffers und des Holzkessels. In einer Weiterentwicklung wurden noch zwei potentialfreie Ausgangsrelais eingebaut. Mit diesen ist es möglich, über die Differenz-Regler-Funktion, Pumpen zu steuern oder Ventile zu schalten. Diese Weiterentwicklung läuft unter dem Namen „Puffercontrol plus”.
Hochwertiger Edelpudergrafit von THIELMANN GRAPHITE - Perfekte Mischung für vielfältige Anwendungen

Hochwertiger Edelpudergrafit von THIELMANN GRAPHITE - Perfekte Mischung für vielfältige Anwendungen

Willkommen bei THIELMANN GRAPHITE - Ihrem Spezialisten für hochwertigen Edelpudergrafit! Unsere Edelpudergraphite sind sorgfältig gemischte Kombinationen aus makrokristallinem Naturgrafit und synthetischem Graphit, um eine einzigartige Qualität zu gewährleisten. Eigenschaften: Unsere Edelpudergraphite bieten eine breite Palette von Eigenschaften, die sich innerhalb folgender Parameter bewegen: Kohlenstoffgehalt: Ca. 95% Feinheit: Von 5 µ bis 65 µ Vielseitige Anwendungen: Schmiermittel: Dank der feinen Partikel eignet sich unser Edelpudergrafit hervorragend als Schmiermittel in verschiedenen Industrieanwendungen. Leitfähigkeit: Mit einem Kohlenstoffgehalt von etwa 95% bietet unser Edelpudergrafit eine gute elektrische Leitfähigkeit. Chemische Beständigkeit: Die Mischung aus Naturgrafit und synthetischem Graphit verleiht unserem Edelpudergrafit eine ausgezeichnete chemische Beständigkeit. Vorteile: Hoher Kohlenstoffgehalt: Mit einem Kohlenstoffgehalt von ca. 95% bietet unser Edelpudergrafit eine optimale Leistung in verschiedenen Anwendungen. Feine Partikelgröße: Die Feinheit von 5 µ bis 65 µ ermöglicht eine gleichmäßige Verteilung und Anpassung an unterschiedliche Verarbeitungsanforderungen. Vielseitige Anwendungen: Unser Edelpudergrafit ist ideal für Schmiermittel, Elektrodenherstellung und weitere industrielle Anwendungen. Warum THIELMANN GRAPHITE wählen? Qualitätssicherheit: Mit zertifizierten Qualitätsstandards und über 40 Jahren Erfahrung bieten wir erstklassige Edelpudergraphite. Maßgeschneiderte Lösungen: Unsere Experten stehen Ihnen zur Verfügung, um individuelle Anforderungen und Lösungen zu besprechen. Kontinuierliche Innovation: Wir bleiben stets auf dem neuesten Stand der Technologie, um innovative Grafitprodukte anzubieten. Kontaktieren Sie uns: Entdecken Sie die Vorteile unseres Edelpudergraphits mit THIELMANN GRAPHITE. Kontaktieren Sie uns für weitere Informationen, individuelle Beratung und maßgeschneiderte Lösungen. Wir freuen uns darauf, Ihnen hochwertige Grafitprodukte bereitzustellen.
Machbarkeitsprüfungen

Machbarkeitsprüfungen

Um ihr Schmiedeteil in höchster Qualität und mit Sicherheit herstellen zu können, nutzen wir FEM-Software um Machbarkeiten zu prüfen und die Materialflussparameter zu bestimmen.
Sensorkennlinie Drucksensor/Kraftsensor

Sensorkennlinie Drucksensor/Kraftsensor

Das Diagramm zeigt die Relation zwischen der Belastung in % FS (Druck/Kraft) und der Ausgangskapazität Cx des Sensors.
Druckübersetzer NT

Druckübersetzer NT

Der Druckübersetzer NT verfügt über einen Zustell- und einen Krafthub mit einer Übersetzung von 1:17,5, 1:25, 1:39 oder 1:61. Anwendung: Ersatz eines kleinen Hydraulikaggregates. Prinzip vom Druckübersetzer NT Unser Druckübersetzer besitzt zwei Kolben, der eine Kolben ist für den Zustellhub bzw. für den Schnellhub beim Arbeitszylinder zuständig und arbeitet als Medium-Wandler. Das bedeutet der Eingangsluftdruck wird 1:1 in Hydraulikduck umgewandelt. Der zweite Kolben arbeitet als Übersetzerkolben, mit einem vorher festgelegten Übersetzungsverhältnis. Dieser ist für den Krafthub am Arbeitszylinder zuständig. Durch die eingebauten Bypass-Ventile im Druckübersetzer kann der Kolben für den Zustellhub jederzeit, bei abfallendem Arbeitsdruck, Öl zum Arbeitszylinder nachfördern. Diese Bauweise erlaubt es, dass der Krafthub jederzeit wiederholt werden kann, ohne den Druckübersetzer und Arbeitszylinder in Grundstellung zu fahren. Der neue Druckübersetzer NT bietet folgende Vorteile: • Kostenersparnis durch Einsparung eines Hydraulikaggregates: Mit unserem neu entwickelten Druckübersetzer lassen sich herkömmliche Hydraulikzylinder mit Eil- und Krafthub betreiben. Durch den Einsatz von zwei Druckübersetzern können sogar doppeltwirkende Hydraulikzylinder im Eil- und Krafthub betrieben werden. • Einfache Ansteuerung: Diese erfolgt durch ein 3/2-Wegeventil für den Zustellhub und ein 5/2-Wegeventil für den Krafthub. • Beliebige Wiederholung des Krafthubes: Mit Hilfe einer Steuerung kann der Krafthub über das 5/2-Wegeventil beliebig oft wiederholt werden. Hierzu muss das 3/2-Wegeventil geschaltet bleiben. • Eingebaute Bypass-Ventile verhindern eine Vakuumbildung beim Stanzen und ermöglichen eine beliebige Wiederholung des Krafthubes. • Der Übersetzerzylinder ist mit Signalgabe ausgestattet, welche zur Überwachung, bzw. zur Wiederholung des Krafthubes dient. • Ein geschlossenes Öl-System, sowie eine absolute Öl-/ Lufttrennung gewährleisten ein Höchstmaß an Betriebssicherheit. • Durch die Verwendung von Dichtungsaufnahmen entstehen geringe Lagerhaltungskosten, für die verschiedenen Übersetzungsverhältnisse, da alle wesentlichen Teile identisch sind. Auch ein nachträglicher Umbau auf ein anderes Übersetzungsverhältnis ist möglich • Das Ölvolumen für den Zustell- und Krafthub, sowie die benötigte Ölreserve für einen sicheren Betrieb des Arbeitszylinders, kann vom Anwender gegen Aufpreis festgelegt werden. Eine Liste über die Standard-Typen folgt. • Die Auslieferung erfolgt im gefüllten Zustand (falls nicht gewünscht, bitte bei der Bestellung angeben)
Fatigue und Betriebsfestigkeit FEM

Fatigue und Betriebsfestigkeit FEM

Wir berechnen die Betriebsfestigkeit von Bauteilen aus Metall oder Faserverbund.
Einbausysteme für Druckleitungen

Einbausysteme für Druckleitungen

Unser C 1000 ES reinigt Öl im Hauptstrom mit der Reinheit eines Nebenstromfilters. Die Nebenstromfiltration von technischen Ölen ist die effektivste und sauberste Art der Filtration. Ein gewöhnlicher Hauptstromfilter kann, weil er dem hohen Systemdruck ausgesetzt ist, aus kinematischen und dynamischen Gründen keine Feinstpartikel aus dem Öl entfernen. Um den Vorteil des Hauptstromfilters - Einbau im Hauptstrom - mit unseren exzellenten Filterergebnissen zu kombinieren, haben wir das Einbausystem C 1000 ES entwickelt. Mittels eines Steuerblocks der u.a. aus einem Druckreduzierventil und einer Volumenstromregelung besteht, filtern wir im Hauptstrom mit den Ergebnissen, die sogar in der Raumfahrt langjährig anerkannt sind. Einbausysteme für Druckleitungen • Auch in Edelstahl oder Kunststoffbeschichtung erhältlich • Feinstfilterung im Hauptstrom bis 1 μm Partikelgröße • Systemdruck bis 360 bar möglich • Konstruktiv einfach einzubinden, da der Steuerblock am Gehäuse installiert ist • Inklusive Manometer zur Element- und Druckkontrolle • Einschließlich aller Befestigungselemente Technische Daten Einbausystem C 1000 ES Mikro-Feinstfiltrationssystem für Druckleitungen bis 360 bar Maße: Durchmesser: 200 mm Höhe: 740 mm Gewicht: 12,3 kg (inkl. Filterelement & Manometer) Sicherheits-Steuerblock mit Volumenstrom- Reduzier- und Druckminder-Ventil. Zwangsweise rein axialer Durchfluss des Öls Durchfluss: rd. 850 Liter/ Stunde (voreingestellt)
Strömungssimulation

Strömungssimulation

Simulationen zur Optimierung der Strömungsverhältnisse in Wärmetauschern. Die THERMO-GAS Wärmetauscher arbeiten optimal, wenn die gleichmäßige Anströmung der Gasströme in den Wärmetauscher gewährleistet ist. Bei ungünstigen Aufstellungsbedingungen wurde bislang durch Versuche und Messungen eine Optimierung der Strömungsverhältnisse angestrebt. Aufgrund höherer Ansprüche an die Leistung der Wärmetauscher sowie erweiterter Einsatzgebiete wurde es notwendig, bereits in der Planungs- phase optimierte Ergebnisse zu erzielen. Das geschieht mittels einer CAD - gestützten Simulation. Diese ermöglicht eine sehr exakte Vorhersage bezüglich der Strömungsverhältnisse. Die Leistungsmöglichkeiten unserer Wärme-tauscher werden als Folge der entsprechenden Einbauten zur Strömungsführung bestmöglich ausgenutzt. Unser Know-how stellen wir Ihnen gern auch außerhalb der Wärmetauschertechnologie zur Verfügung. Das konkrete Projekt Bei einer Anlage für die katalytische Verbrennung wurde aufgrund des Einbaus einer THERMO-AWT 3 Wege Prozessluftklappe die Anschlußhaube deutlich verkürzt. Nach dieser Änderung wurde die berechnete Leistung des THERMO-GAS Wärmetauschers nicht mehr erreicht. Die Differenz war mit ca. 20% ermittelt worden. Die Anschlußhaube wurde mit Leitblechen ausgestattet, deren Ausführung anhand mehrerer Simulationen definiert wurde.Die Strömungsverhältnisse vor dem Umbau der Anschlußhaube sind im Bild links dargestellt,
Verformungslager VG1

Verformungslager VG1

PGslide® Verformungs- Gleitlager, geführt Verformungslager VG1 PGslide® Verformungs- Gleitlager, geführt -abweichende Lasten und Abmessungen nach Kundenwunsch
Spaltrohrmotorpumpen für Kältetechnik

Spaltrohrmotorpumpen für Kältetechnik

Das Anwendungsraster schließt Förderhöhen bis 180 m, Volumenströme von 1,0 bis 85 m3/h, Fluidtemperaturen von –50°C bis +90°C, Leistungsstärken von 1 bis 19 kW und Druckstufen von 25 bis 40 bar ein. Unser vielgenutztes Pumpenauslegetool für die Kältetechnik unterstützt Sie bei der einfachen Konfiguration und Auslegung einer passenden Pumpe.
Design, Prototyping und Herstellung

Design, Prototyping und Herstellung

Unsere Lösungen umfassen Hardware und Software, aber auch mechanische Komponenten: Prüfstände für verschiedene Säulentypen Elektronik für Standard-SEMs Prototyping oder sich ändernde Elektroniken für F&E Ionenstrahl-Geräte Elektronenstrahl-Geräte Laser-Scanning-Gerät
Thermisches Beschichten - die Lösung für hochwertige, funktionelle Beschichtungen

Thermisches Beschichten - die Lösung für hochwertige, funktionelle Beschichtungen

Das Thermische Spritzen als Verfahrensgruppe bietet universelle Möglichkeiten zur Aufbringung verschiedener funktioneller Schichten, zur Reparatur oder auch zur Neufertigung von Bauteilen. Die GfE verfügt über mehr als 20jährige Erfahrungen auf dem Gebiet des Thermischen Spritzens und führt für nahezu alle Industriebereiche Lohnbeschichtungen aus. Unsere Erfahrungen und unser Know-How in der Werkstoff-, Schicht- und Technologieentwicklung ermöglichen uns, auch bei neuen Anwendungen unsere Kunden umfassend zu beraten und zielstrebig geeignete Beschichtungslösungen zu finden. Der neueste Stand der thermischen Spritztechnik sowie die Maschinenausstattung zur mechanischen Bearbeitung garantieren eine komplette sowie schnelle und zuverlässige Abwicklung Ihrer Aufträge.
Sichere, langzeitstabile Messung

Sichere, langzeitstabile Messung

Driftfreie Mittelwertsmessungen, kinetische Messungen, Monitoring, Überwachung etc. (durch in-Process-Justierung, Differenzwägetecnik).
HHP-Puffer u.-Federn

HHP-Puffer u.-Federn

Wirkungsweise HHP-Puffer Puffer Serie B1 Weitere B1-Modelle Puffer Serie B5 Puffer Serie BLS Anwendungsbeispiele Puffer Wirkungsweise HHP-Federn Anwendungsbeispiele Federn
Reaktive Polymere & Flammschutzmittel

Reaktive Polymere & Flammschutzmittel

Außergewöhnliche chemische Zusätze machen Klebstoffe und Reaktionsharze zu Hochleistungswerkstoffen Klebstoffe und Matrixharze lassen sich lassen sich unter Verwendung von reaktiven chemischen Zusätzen wirkungsvoll modifizieren, so dass technische Eigenschaften wie z.B. Schlagzähigkeit, Flexibilisierung und Klebkraft oder Brandverhalten signifikant verbessert werden, um so eine breit gefächerte Palette von Anforderungsprofilen zu erfüllen. Besonders gebräuchlich sind diese Additive in reaktiven Formulierungen für Klebstoffe, Prepregs und Epoxidharz-Mischungen für Composites sowie für Beschichtungssysteme und Gießharze. Unsere Zusätze sind mit allen konventionellen Epoxy,- Polyester und Polyurethanharzen einsetzbar. Unser umfassendes Produktprogramm aus Flammschutzmitteln, Additiven zur Steigerung der Klebrigkeit (Tackifier) und Schlagzähigkeit (Toughener), Flexibilisatoren, biobasierten Polyesterharzen bis hin zu Komplettsystemen für die Composite-Industrie bietet Lösungen für unterschiedlichste Produkte und Anwendungsindustrien. Kundenspezifische „Tailor-made"-Produkte entwickeln wir in vertrauensvoller, direkter Zusammenarbeit mit Ihnen als Kunde und verbinden dabei Ihre Anforderungen mit unserem Knowhow. Auf aktuelle Marktbedürfnisse und neue technische Herausforderungen reagieren wir mit einem hohen Maß an Flexibilität und erreichen dadurch ein hohes Maß an Kundenzufriedenheit und Kundenverbundenheit. Klebstoffzusätze Flammschutzmittel Tackifier & Flowcontrol Toughener Reaktivharze und Systeme Composites & Prepregs Produktsuche Suche in allen Anwendungen Biobasierte Reaktivharze Composites & Prepregs Flammschutzmittel Klebstoffzusätze POLYCAVIT® Elastomer modified epoxy POLYDIS® CTBN modified epoxy POLYDIS® Rubber modified tackifier POLYPHLOX® Flame retardant POLYVERTEC® Ready-made Reaktivharze und Systeme Tackifier & Flowcontrol Toughener Forschung & Entwicklung Anwendungstechnik Produktübersicht Modifier Produktübersicht Composite Systems
Bearbeitung Gussprodukte

Bearbeitung Gussprodukte

Aufgrund unserer Erfahrungen und modernster Bearbeitungseinrichtungen realisieren wir Ihre individuellen Produktanforderungen in jeglicher Fertigungstiefe.
Leistungselektronik HIL-Simulation eHS

Leistungselektronik HIL-Simulation eHS

Spezieller Solver um Umrichter und Leistungselektronik-Systeme allgemein in Echtzeit in Nanosekunden-Schritten simulieren zu können
Multilayer Leiterplatten

Multilayer Leiterplatten

Leiterplatten in Top Qualität. Multilayer Leiterplatten bis 24 Lagen bei B&D electronic print. Lagenaufbau einer mehrlagigen Leiterplatte wird bestimmt durch Lagenanzahl, die elektrischen Eigenschaften bezüglich der Spannungsfestigkeit, der Dielektrizitätskonstante und elektromagnetischer Verträglichkeit/EMV, der thermischer Dimensionsstabilität, sowie der Kupfer Endstärke. Es sollten folgende Punkte beim Lagenaufbau beachtet werden: 2 Prepregs zwischen den Lagen - (Isolation und Harzverfüllung sind sonst kritisch) Die Mehrlagenschaltung soll symmetrisch aufgebaut werden - bzgl. der Innenlagen Dicken, wenn Sie verschiedene Kernstärken verwenden wollen, als auch der Prepregs. Es soll Aspect-Ratio von ≥ 1:8 beachtet werden. Das bedeutet ein Verhältnis kleinster Bohrdurchmesser zur Pressdicke. Eine ungleichmäßige Kupferverteilung sollte auf einer Innenlage vermieden werden - (Gefahr dabei ist eine Verwindung und eine Verwölbung. Die Impedanzkontrollierten Leiterbahnen unbedingt auf die Innenlagen legen. Der Querschnitt der Leiterbahnen ist aufgrund der eng tolerierten Kupferauflagen so genauer reproduzierbar. Die Restringe auf den Innenlagen sollten umlaufend mindestens 0,13 mm haben und die Freistellungen mindestens 0,35 mm größer als der dazugehörende Bohrdurchmesser sein – Ihre Bestückungsbohrungen werden 0,15 mm und Vias 0,10 mm größer als der von Ihnen angegebene Enddurchmesser gebohrt. Standard - Multilayer-Leiterplatten Materialien: Als Kern-Materialien werden standardmäßig für die Herstellung der Innenlagen folgende Materialstärken eingesetzt: 0,10mm 0,15mm 0,20mm 0,36mm 0,50mm 0,76mm 0,96mm 1,20mm Alle Basismaterialen sind nicht immer mit jeder Nennstärke und jeder Kupfer-Stärke direkt ab Lager verfügbar. Alle Materialien haben eine Dickentoleranz von +10%. Je dicker die Materialstärke, desto dimensionsstabiler ist der Kern der fertigen Mehrlagenschaltung. Je dicker Sie die Prepreg - Stärke wählen, desto stabiler ist das gesamte Gewebe. Umso dünner die Prepregs sind, desto grösser ist der gesamte Harzanteil. Umso dicker das gewählte Kupfer der Innenlagen ist , desto mehr harzreiche Prepregs müssen zu dem Verfüllen der weggeätzten Kupferflächen eingesetzt werden. Multilayer-Aufbauten ohne Kundenvorgabe: Wird von Ihnen kein fest definierter Multilayerlagenaufbau vorgegeben, so übernimmt B&D electronic print, entsprechend unseren Erfahrungen und Materialverfügbarkeiten die Konzipierung Ihres Multilayer Lagenaufbaus vor. Sie können jederzeit den gewählten Multilayer-Lagen-Aufbau erfragen. Dieser kann allerdings jederzeit auf Ihren gewünschten Multilayer- Lagen-Aufbau, wenn es technisch möglich ist geändert werden. Multilayer-Lagenaufbau nach Ihrer Vorgabe: Wird der Multilayer-Lagenaufbau von Ihnen vorgegeben, so wird dieser von B&D electronic print hinsichtlich Produzierbarkeit und Materialverfügbarkeit geprüft. Am besten ist eine Vorababstimmung von Multilayer-Lagenufbauten und Verfügbarkeiten, besonders im Zusammenhang mit Impedanz- und EMV-technischen Aspekten. Fällt die Vorprüfung negativ aus, so wird dem Kunden von B&D electronic print, ein Alternativvorschlag zur Freigabe unterbreitet. Wir erläuterten bereits in unserer Website unter Multilayer-Lagenaufbau, drei Standard Lagenaufbauten – siehe: Beispiel Lagenaufbau einer 4 lagigen Multilayer Leiterplatte Beispiel Lagenaufbau einer 6 lagigen Multilayer Leiterplatte Beispiel Lagenaufbau einer 8
PCS Pressure Control System - Druckregeleinheit

PCS Pressure Control System - Druckregeleinheit

Das PCS ist in verschiedenen Ausführungen und Gehäusen vom Schalttafeleinbaugerät bis zum 19"-Einschub in IP20 aber auch spritzwassergeschützt (IP54) erhältlich. Die Druckregeleinheit Pressure Control System, kurz PCS, automatisiert bei Prüfaufgaben, Dauerlaufprüfung und Kalibrierung von Sensoren und Bauteilen mit Luft und Gasen die Druckmessung und -regelung durch einen sehr flexibel anpassbaren, modular aufgebauten und variantenreichen Prüfaufbau. Modularität im mechanischen Aufbau, in der Sensorik des Messsystems sowie in der flexibel konfigurierbaren Auswertungs-Software gewährleisten die Anpassung an verschiedenste Prüf- und Messaufgaben. Produktmerkmale Druckregeleinheit für Luft- und Gase Regelung auch von großen Durchflüssen Messbereichs-Endwerte von 1 mbar bis 16 bar Mess- und Regel-Spanne von 1:10, erweitert 1:100 10 frei konfigurierbare Prüfprogrammspeicher Auswertung von bis zu 2 Regelstrecken gleichzeitig Verwendbare Typen von Regelventilen: alle Mess- und Regelgenauigkeit ≤±0,1% vom Endwert Prüftemperatur -10 bis +70°C Schnittstellen: RS232, RS485, Ethernet TCP/IP Digitale Ein-/Ausgänge zur SPS-Kommunikation und zur Ansteuerung von Aktoren (z. B. Magnetventile) Modularer und kompakter Aufbau: Geschlossene wie auch offene Systeme mit großer Durchflussleistung können unter Verwendung verschiedener Regelventile schnell und hysteresfrei ausgeregelt werden. Druckregelung mit dem Pressure Control System: schnell und genau!
Produkte für den Funktionserhalt

Produkte für den Funktionserhalt

Produkte für den Funktionserhalt für elektrische Leitungsanlagen Elektrische Leitungsanlagen für bauordnungsrechtlich vorgeschriebene, sicherheitstechnische Anlagen und Einrichtungen müssen so beschaffen oder durch Bauteile abgetrennt sein, dass sie im Brandfall ausreichend lang funktionsfähig bleiben (Funktionserhalt). (M)LAR 5.1.1 Die Brandschutzgehäuse von EAS sind für den Einbau von Verteilern für elektrische Leitungsanlagen bestimmt, die im Brandfall einen Funktionserhalt für die Dauer von 30 bzw. 90 Minuten haben müssen. Dieser Anwendungsbereich ist mittels Allgemeiner Bauaufsichtlicher Zulassung geprüft und belegt. !!!! Bitte beachten Sie, dass der Funktionserhalt selbst, also die Sicherstellung der Funktion der im Gehäuse befindlichen Verteileranlagen über den geforderten Zeitraum hinweg, nicht pauschal erteilt werden kann, sondern immer zusammen mit den im Brandschutzgehäuse vorgenommenen Einbauten geprüft und nachgewiesen werden muss !!!!
Messungen zur Optimierung von Drehstrommaschinen

Messungen zur Optimierung von Drehstrommaschinen

Messaufgaben Für die Optimierung der Magnetkreise leistungsstarker Drehstrom-Synchronmaschinen und Drehstrom-Asynchronmaschinen wurden in enger Zusammenarbeit mit einem Hersteller parallel EPSTEIN-Proben Ringkern-Proben untersucht. Bestimmt wurden die Hystereseverluste P(J)Hyst. im quasistatischen Gleichfeld die frequenzabhängigen Magnetisierungskennlinien J(H) bis Hmax ≈ 30.000A/m die frequenzabhängigen dynamischen Ummagnetisierungsverluste P(J) bei Frequenzen von 50Hz und 60Hz und den jeweiligen 3./5./7. Oberwellen Die dynamischen Ummagnetisierungsverluste wurden ermittelt bei sinusförmigem Zeitverlauf J(t) = J^*sinωt bei trapezförmigem Zeitverlauf J(t) bei weiteren Zeitverläufen J(t) der Polarisation. Ergebnisse (Auswahl) J(H)-Magnetisierungskennlinien Erwartungsgemäß unterscheiden sich die J(H)-Magnetisierungskennlinien der EPSTEIN-Proben von denen der Ringkern-Proben im Bereich unterhalb des Knies. Im dargestellten Untersuchungsbeispiel werden für Austeuerungen J > 1,50T die J(H)-Kennlinien unabhängig von der Form der Probe unabhängig von der Frequenz P(J)-Verlustkennlinien Schwerpunkte dieser Untersuchungen waren die Bestimmung der frequenzabhängigen Verlustkennlinien P(J,f) der Verlustkennlinien bei unterschiedlichen Zeitverläufen der Flussdichte B(t) Wie bei der J(H)-Kennlinie auch gab es unterschiedliche P(J)-Kennlinien für die EPSTEIN- und die Ringkern-Proben. Für den Auftraggeber war insbesondere der Kennlinienverlauf bei hohen Aussteuerungen (J > 1,5 T) von Interesse. Verlustmessungen bei trapezförmiger Polarisation Die Übertragung der gemessenen Verlustwerte P(J) auf die i. allg. inhomogen ausgesteuerten Magnetkreise in den elektrischen Maschinen ist problematisch. So ist z. B. der bei Verlustmessungen durch den Standard vorgegebene sinusförmige Zeitverlauf der Flussdichte B(t) = B^ sin(ω t) i. d. R. nicht charakteristisch für die Betriebsbedingungen. U. a. aus diesem Grunde wurden zusätzlich die Verluste P(J) bei davon abweichenden Zeitverläufen J(t) bzw. B(t) bestimmt. Die Untersuchungen werden am Beispiel einer Verlustmessung mit Flussdichten B(t) mit trapezförmigem Zeitverlauf erläutert. Charakteristisch für den trapezförmigen Zeitverlauf der Polarisation sind die Flanken mit einem konstanten Anstieg dΦ/dt ~ dJ(t)/dt ≈ const. das Plateau bei J = J^ = const. mit einem Anstieg dΦ/dt ~ dJ(t)/dt = 0 Die Ummagnetisierungsvorgänge erfolgen in den Flankenanstiegen, die Ummagnetisierungsverluste hängen entsprechend stark von den Anstiegen dJ(t)/dt ab. Die Zeitabschnitte mit dynamischer Magnetisierung (Hysterese – & Wirbelstromverluste) mit statischer Magnetisierung (Hystereseverluste) können getrennt ausgewertet werden. Sowohl die gemessenen Magnetisierungskennlinien J(H) wie auch die Verlustkennlinien P(J) konnten mathematisch sehr gut beschrieben werden. In Zusammenarbeit mit einem Motorenhersteller wurden die – J(H)-Magnetisierungskennlinien – P(J)-Verlustkennlinien der eingesetzten Elektrobänder bestimmt. Gemessen wurde an streifenförmigen EPSTEIN- und an Ringkern-Proben. Durch Variation der Messparameter wurden die Magnetisierungsbedingungen den Kernen der E-Maschinen angenähert. Mit den nach Abschluss der Untersuchungen mathematisch formulier-ten Kennlinien werden die magnetischen Eigenschaft
Neuentwicklung / Bauteiloptimierung

Neuentwicklung / Bauteiloptimierung

Gerne unterstützen oder übernehmen wir auch die konstruktive Arbeiten an Ihren Bauteilen - sei es eine grundlegende Neuentwicklung oder die gieß- bzw. fertigungstechnische Optimierung eines bereits bestehenden Bauteils. Wir bieten Ihnen: 3D Modellierungen (mit Zeichnungsableitungen) auf allen gängigen CAD Systemen Gieß- und Erstarrungssimulationen FEM –Berechnungen Prototypenfertigung sowie Kleinserien-Werkzeuge
3.2.1. Kennlinienvergleich Radialventilatoren

3.2.1. Kennlinienvergleich Radialventilatoren

Mit einem Ventilatorlaufrad mit vorwärtsgekrümmten Schaufeln wird aufgrund der hohen Leistungsdichte bei kleinstmöglichem Bauraum eine hohe Luftleistung erzielt. Das Laufrad erzeugt dabei fast ausschließlich kinetische Energie, welche im Ventilatorgehäuse in statischen Druck umgewandelt wird. Als nachteilig ist aber der geringere Wirkungsgrad bzw. die hohe Leistungsaufnahme zu erwähnen. Bei einem Ventilatorlaufrad mit rückwärtsgekrümmten Schaufeln wird die erzeugte Strömungsenergie schon im Laufrad weitestgehend in statischen Druck umgewandelt, der Anteil der kinetischen Strömungsenergie ist vergleichsweise gering. Neben dem daraus resultierenden höheren Wirkungsgrad sind diese Radtypen auch ohne Spiralgehäuse ohne größere Leistungseinbußen verwendbar. Typische Anwendungen sind z.B. in AHUs, Dachventilatoren oder für Luftumwälzung in industriellen Anlagen. Zur ablösungsfreien Durchströmung des Laufrades ist die Verwendung einer passenden Einströmdüse von wesentlicher Bedeutung (optimale Spaltströmung). Einströmdüse und Ventilatorlaufrad sind strömungstechnisch aufeinander abgestimmt, daher sollte unbedingt auf die ausgelegte Düse zurückgegriffen werden. Sollte dies nicht der Fall sein hat dies deutliche negative Einflüsse auf die Ventilatorcharakteristik. Ein vorwärtsgekrümmtes Ventilatorlaufrad erzeugt einen vorgegebenen Druck etwa mit der halben Umfangsgeschwindigkeit eines rückwärtsgekrümmten Ventilatorlaufrades und ist daher wesentlich leiser. Darüber hinaus ist das Geräuschspektrum auf Grund der höheren Schaufelzahlen bei vorwärtsgekrümmten Ventilatorrädern breitbandiger und bei rückwärtsgekrümmten Ventilatorrädern tonaler (wenige Schaufeln). Die Gesamtdruck-Kennlinie ist im üblichen Anwendungsbereich beim vorwärtsgekrümmten Ventilatorlaufrad flach. Bei einem rückwärtsgekrümmten beschaufelten Laufrad kann der Druckverlauf eher steil abfallen aber auch flach auslaufen, je nachdem wie das Durchmesserverhältnis / Breitenverhältnis des Rades ist. Daraus ergeben sich bei Druckschwankungen am Ventilator im eingebauten Zustand unterschiedliche Änderungen des Volumenstromes. Bei Ventilatorrädern mit einer steilen Kennlinie kann der Fehler bei der Druckbedarfsrechnung größer sein, da eine Druckänderung hier eine geringere Volumenstromänderung im Vergleich zu einer flachen Kennlinien hervorruft. Somit sind Ventilatorlaufräder mit einer steilen Kennlinie besser geeignet, wenn mit schwankenden Druckänderungen im Betrieb zu rechnen ist. Der Leistungsbedarf ist bei konstanter Drehzahl für den vorwärtsgekrümmten Typ mit dem Volumenstrom progressiv steigend, für den rückwärtsgekrümmten dagegen nur bis zu einem definierten Maximum. Zusammenfassend lässt sich sagen, dass das vorwärtsgekrümmte Ventilatorlaufrad für denselben Anwendungsfall 10 bis 25% kleiner ist als ein rückwärtsgekrümmtes und wegen der geringeren Drehzahl leiser läuft. Es ist jedoch auch weniger effizient und benötigt mehr Antriebsleistung.
Prozess - Messtechnik

Prozess - Messtechnik

Prozess-Datenerfassung, Fernwirktechnik und Steuerung für "in situ" Altlastensanierung. Mess-Schränke Spezialanfertigung je nach den Bedürfnissen im Schadensfall, für sämtliche permanent oder sporadisch zu überwachenden physikalischen Messgrößen, Datenfernübertragung, Sensorik und Systeme zur Anlagenfernwachung, automatische Störfallmeldungen mit "ISM"
Entwicklung elektrotechnischer Komponenten

Entwicklung elektrotechnischer Komponenten

Hard- / Softwareentwicklung und Integration elektrotechnischer Komponenten Für Ihre Applikation die optimale Hard- und Software: Nach Ihren Spezifikationen entwickeln wir individuelle Lösungen. Ob auf Basis programmierbarer Logiken, Microcontrollern, Prozessoren (x86, ARM) oder Embedded-Lösungen, Sie erhalten ein tragfähiges Konzept. Die Produktplanung, -entwicklung und -gestaltung wird in enger Zusammenarbeit mit Ihnen durchgeführt. Integration: Baugruppen, Geräte und Systeme Sind zusätzliche Peripherien abgestimmt auf die spätere Anwendung erforderlich? Die von uns entwickelten Soft- und Hardware-Komponenten werden mit verschiedensten Schnittstellen in Ihre Applikation integriert. Auch hierfür schaffen wir die Lösung mit vielfältigen Ideen und Optionen durch unser breit gefächertes Know-how zur Integration in Ihre Geräte.
IHR ANTRIEB FÜR OPTIMALE PROZESSE

IHR ANTRIEB FÜR OPTIMALE PROZESSE

Erreichen Sie pure Flexibilität durch die Kombination von Kurvengetriebe mit konstanter Steigung inklusive modernem Servo-Antrieb. Erhalten Sie die Vorteile einer extrem hohen Genauigkeit sowie einer hochqualitativen Lagerung der Kurvengetriebe. Flexible Teilung Flexible Schrittzeiten Flexible Stillstandszeiten Frei Programmierbar Hohe Einsatzvielfalt Robuste Lastaufnahme Log-In
Induktive Sensoren für extreme Bedingungen

Induktive Sensoren für extreme Bedingungen

Proxitron hat mit ProxiPolar und ProxiHeat eine weitere Serie der induktiven Sensoren auf den Markt gebracht. Die elektrischen Komponenten dieser speziell für extreme Bedingungen entwickelten Sensoren sind in einem hochwertigen Kunststoffgehäuse vollvergossen. ProxiPolar Sensoren können ab Temperaturen von - 40 °C eingesetzt werden und eignen sich daher perfekt für dauerhafte Installationen im Außenbereich. Eine Vielzahl von Gehäusebauformen sowie Sensoren mit Schaltabständen von 19 mm bis 200 mm stehen zur Auswahl. ProxiHeat Sensoren werden bei Umgebungstemperaturen von bis zu 120 °C eingesetzt. Sie sind ebenfalls in unterschiedlichen Gehäusebauformen sowie mit Schaltabständen von 19 mm bis 200 mm erhältlich. Proxitron grenzt damit die Sensoren im Kunststoffgehäuse (ProxiHeat) klarer von der bewährten Hochtemperaturserie im Edelstahlgehäuse ab. Diese finden, wie gewohnt, in Temperaturbereichen bis zu 230 °C Einsatz. Eine lange Lebensdauer und hochwertige Qualität, Made in Germany, zeichnen Proxitron Sensoren bereits seit über 40 Jahren aus.